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F i b e r  B r a i d s  a n d  K n o t s  

Giuseppe Gaeta ~ 
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Fiber braids and knots are fiber bundles having braids or knots as base space. 
The use of these in concrete physical problems is sketched and the relevant 
topological classification is discussed. 

INTRODUCTION AND MOTIVATION 

In a previous note (Gaeta, 1992) we remarked how knot theory and 
knot invariants (Burde and Zieschang, 1986; Kauffman, 1983, 1987a, 1988, 
1990a; Rolfsen, 1976) can be useful also in connection with very simple 
classical mechanics problems--besides the known applications to modern 
theoretical physics issues (Yang, 1967; Yang and Ge, 1989; Jimbo et al., 
1989; Wadati et al., 1989; Kauffman, 1987b, 1990b, 1991 ; Lusanna, 1990) -  
such as the study of a nonlinear oscillator with damping and periodic 
external forcing. 

In the present note, we introduce an extension of knots and braids 
which turns out to be quite a natural tool in the topological study of closed 
trajectories in fluid mechanics and magnetohydrodynamics, as well as in the 
study of the dynamics of point particles carrying an abstract field. 

We begin by mentioning a couple of simple physical systems for which 
we would be interested in a topological classification of periodic motions. 

A. Consider a point particle on the line, obeying the equations of a 
damped, periodically forced, nonlinear oscillator and carrying a field A, 
valued in a manifold Mc_RN; this field obeys a dynamics which depends on 
the position of the point particle. The equations of motions will then be 

.~ = F(x, .~, t), A = 4, (A, x, t) (1) 
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(As an example, one can think of an electron in a crystal, constrained to 
linear motions, in a magnetic field.) Can we classify topologically the peri- 
odic solutions for both x and A? 

B. A charged particle moving in a purely magnetic field has constant 
speed; once its initial speed is assigned, we can consider its trajectories. 
Closed trajectories obviously correspond to knots. Suppose we know one of 
these trajectories K0, and that neighboring particles move without leaving an 
invariant tube To centered on K0. Can we topologically classify the collective 
motions of the charged plasma inside To? 

In order to answer these kinds of questions, we introduce the concept 
of fiber braid, which is actually an immediate extension of the more familiar 
"ribbon braids" (see, e.g., Reshetikhin, 1989). 

We will consider a fiber bundle (E, B, Jr) with as base B a knot K0, and 
fiber 7c-](x)=M. Let us see how this can be of use for the cases considered 
above. 

A. For the correspondence between periodic solutions for the motion 
of the particle and knots in the space R ~ x S 1, see Gaeta (1992). It is clear 
that, as x(t) moves in R, the field A(t) performs a motion in the manifold 
M, which is indeed the fiber of the fiber knot; if A(t) is periodic with the 
same period T= To as the particle motion, this trajectory must close once 
x(t) has gone around the knot K0. The topological classification of periodic 
motions relies therefore on the description of the knot corresponding to the 
point particle motion, and on the classification of closed paths in M, i.e., on 
7c(M). 2 Remark that if we do not have T-- To the situation is slightly differ- 
en t ; in  order to have periodic solutions we must impose that after x(t) has 
described some number n of loops around K0, also the trajectory for A(t) 
closes: in this case we should use Z x n (M)  rather than 7c(M) alone. 

B. Consider a cross section of the flow tube To as the fiber of our 
bundle: this gives the two-disk D2; notice that no trajectory can pass through 
points of K0 unless it coincides with K0, so that the relevant manifold M is 
actually the punctured disk D~-D2\{0} .  The trajectories of particles in the 
flow tube can be described as ~b(x), where xeKo and ~(x)eJr-l(x). Since 
Dg is contractible to the circle S 1, we could actually deal with a circle bundle, 
M = S  1. 

If  we are interested in the trajectory of a single particle evolving in To, 
the situation is pretty much the same as in case A, but since we are asking 
about periodic motions of all particles, we should not look at a single section 
of the bundle, but rather see the trajectories as motions following a connec- 
tion defined in the bundle. This leads to classifying connections co that, 

2No confusion should be possible between the projection of the bundle and the fundamental 
group of the manifold, both denoted by n. 



Fiber Braids and Knots 705 

integrated over the loop K0, give the identity map. In other words, we should 
look at the holonomy group of the bundle (Dubrovin et al., 1982). 

BRAIDS 

Let us now consider braids ;3 the most general braid is generated by the 
elements sketched in Figure 1 by means of two operations, which we will 
call here composition or product, denoted as o, and juxtaposition or sum, 
denoted by @ ; examples of these are given in Figure 2. 

The number of strings in the braid is called its dimension (or order); 
the braids of dimension n form a group under the product, called the braid 
group or order n, Bn; clearly we have 

o: B. x B . ~ B . ;  0 :  B. xB,,,~B.+,,, (2) 

The Reidemeister moves RII and Ri l l  are readily expressed in terms of 
relations in the braid group: 

RII.e~, cr o o-(-I)=e@ e= o -~-1) ocr (3) 

RIII,ec.(cr@e) o(e@cr)o(cr@e)=(e~cr)o(cr@e)o(e@cr)  (4) 

The expression of the Reidemeister move RIIIis nothing else than the Yang- 
Baxter equation. 4 

Fig. 1. 

- s  

0-  (3- 
Generators of  braids ; these elements generate the most general braid, as explained in 

the text. 

3As is well known, every knot or link can be encoded as a braid of appropriate dimension by 
a canonical procedure. 

4This is often encountered in the notation R i 2 -  (or ~ e), R23 ~ (e (~ o'). 
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0"- 

0-" o 0 "  

Fig, 2. An example of braids generated by the elements of Figure 1 by means of the two basic 
operations of product and sum, 

RIBBON AND FIBER BRAIDS 

A meaningful generalization of braids is given by the so-called "ribbon 
braids ;" the direct analogue of the generators of Figure 1 are given in Figure 
3, together with two new generators that must now be added (0, 0- '  in 
Figure 3). Notice that for ribbon knots a Reidemeister move RI  does gener- 
ate a 0-type element; see Figure 4. 

It requires very little abstraction to see {0, '0-'} as generating the homo- 
topy group of S 1, i.e., Z: indeed, a ribbon can also be seen as a framing in 
a tube with axis on one of the borders of the ribbon (this applies immediately 
to our fluid example). 

Fig. 3. Generators for ribbon braids. Together with elements corresponding to ordinary braid 
generators, new generators are present. 
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l / 
Fig. 4. The effect of  a Reidemeister move R / o n  ribbon braids. This can be seen directly on 
the ribbon (a), or considering a ribbon braid as equivalent to the braid given by the bords of 
the ribbon (b). 

The relations involving only {o-, o --I, e} continue to satisfy (3), (4); as 
for the new elements, they obviously satisfy 0 o 0 -1= 0 -1 o 0=e ,  as well as 
( a , p = + l )  

o -~ o (e@ 0t~)=(0~ @e) o o -~ 
(5 )  

o -~ o (0  ~ @ e)  = (e  @ 0 8) o o -~ 

Let us, for definiteness, fix the dimension n of the braids. It is clear that 
{ty, o --1, e} still generate Bn, while {0, 0- ' ,  e} generate Z". By the relations 
(5), which define the interaction of the two kinds of generators, it is clear 
that the total group these generate is B, |  Z" (semidirect product, with 
B. acting on Z"). 
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This setting is readily generalized to the required degree of abstraction : 
let G denote the relevant group of transformations (possibly, but not neces- 
sarily, Abelian) of the fiber M [depending on the physical problem at hand, 
as we have seen, this will be re(M) or the holonomy group of a fiber bundle 
over S 3 with fiber M--f rom now on denoted h(M)], and let {0~; i=  
1 , . . . ,  n; a = 4-1 } be its generators. 

As in the ribbon case--fixing again the dimension n of the braids for 
definiteness--we have that {or, o--3,e} generate the group B,, while 
{Oi, 0, 73, e} generate the group G " - ( G x . . .  x G). 

If  we assume the relations (a, f l=  +I )  

a ~ o (e (~ 0~) = (0~ �9 e) ? o -~ 

o "~ o (0 /~Oe)=(e(~  0~)o o -~ 
(6) 

to be satisfied for all i, then we have that the total group is 

B(~M~= B,, | G" (7) 

This also provides a topological classification of fiber braids. 

DISCUSSION 

It is worth spending a few words on the relations (5), (6). These essen- 
tially say that twisting of the fiber does not interact with the braid structure; 
indeed, a graphical translation of (5) is provided by Figure 5 and shows this 
to be quite a reasonable assumption. 

Therefore, until there is no physical interaction among the two branches 
of a crossing, relations (5), (6) are perfectly justified; obviously, they just 
claim topological equivalence, while if we consider fluid motion and attach 
an energy functional to it, this will not in general depend only on the topol- 
ogy (Moffat, 1990). 

We also remark that, among different physical applications, braids can 
also be seen as representing world lines of scattering particles [the Yang- 
Baxter equation represents then the factorization of the S matrix into two- 
particle scatterings (Kauffman, 1990b, 1991)]. In this setting it would be 
quite natural to consider also internal degrees of freedom of the particles, 
in the sense of gauge theories; these are indeed described in terms of fiber 
bundles, so that our concept of fiber braids is again quite pertinent. Notice 
that in this case (6) amounts to saying that scattering does not affect the 
internal state of the particle; if this does not apply, relation (6) should be 
replaced by more complicated ones, which it would be out of place to discuss 
here. 
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I 

Fig. 5. The twisting of ribbons commutes with the crossings. This gives a justification of 
equations (5), (6). (a) A ribbon braid; (b) the r ibbon as identifying a frame in a cylinder, or 
a connection in a flow tube. 

FIBER K N O T S  

We have shown that fiber braids are classified by the group (7); the 
physical problems providing the motivation for our investigation were set 
in terms of knots, and braids were introduced as a practical way to study 
and encode knots. We should therefore check how the situation changes 
when we "close the braid," i.e., when we pass from a braid to the correspond- 
ing knot K. 

In Figure 6 we have depicted a fiber braid by drawing the diagram 
corresponding to its base braid (the one corresponding to the threefoil knot), 
and by the circle and the square we denote symbolically two elements of  the 
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Fig. 6. By using the relations (5), (6), we can always concentrate the nontrivial actions on the 
fiber in a specific region of the fiber knot; see text for details. 

g roup  G; the = sign denotes  topological  equivalence [including the possibil- 
ity affirmed by (6) to push elements of  G along the strings], and  ~ denotes  
the s tandard  cor respondence  between braids and  knots.  

A little reflection shows t h a t - - a s s u m i n g  the physical  validity of  ( 6 ) - -  
the message of  Figure 6 is valid in general :  on a kno t  we can g roup  the 
act ions on the fiber in a specific region 5 so that  in the braid representat ion 
of  the kno t  only  one o f  the strings will be affected by nontr ivial  act ion of  G. 

M o r e  formally ,  a kno t  is a cyclic ~ of  elements of  the fo rm 
b<~ which are generated f rom {or, o -~-1), 0i, 0~ -l), e} by @ alone, so that  
by  repeated appl icat ion of  (6) we can arrive at  the si tuation considered 
above.  6 

Therefore ,  the topological  classification of  fiber knots  is given by 
B 0)-.  G (and not  B @_. G"), where B is the braid group.  

Not ice  that  now B acts on G in a nons imple  way:  it essentially tells, 
given a "hor izon ta l  sequence" a = (0~, @. �9 �9 @ 0io), how this is t r ans formed  
into a "vert ical  sequence"  /3 = (e (9" " "@ e @ ~),  ~ = (01.,> o �9 �9 �9 o 0;~.~), by 
pushing the 0~ a long the kno t  (see the third equivalence o f  Figure  6). 

I f  G is Abelian,  the act ion of  B on G is actually trivial, and the fiber 
kno t  is identified by a pair  (b,g)e(B, G), but  in general G could be non-  
Abelian.  This  can be the case, e.g., if G =  Jr(W),  with W the orbi t  space 
f~(M, f#) o f  a Lie g roup  fr on a mani fo ld  M [a non-Abel ian  Jr(W) corre- 
sponds  to the appearance  o f  orbifolds].  

E X A M P L E S  

We would  now like to look again  at the physical si tuations ment ioned  
in the In t roduc t ion  as mot iva t ing  examples.  

5This amounts to saying that for fiber bundles over S ~ = [0, 2re] we can concentrate the relevant 
Dehn surgeries in a small interval, say [0, e]. 

6Notice that in the same way, for an m-component link we can concentrate nontrivial elements 
of G on m strings only of the corresponding braid. 
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A. In this case the relevant group is G=  Jr(M), so that periodic solu- 
tions (x(t), A(t)) are topologically classified by an integer n (the period being 
nr, with r the period of the forcing term) and by elements of B, @_~ lr(M). 

For example, if the field A represents a magnetic moment of the particle, 
of constant amplitude but free to point along any direction of three-dimen- 
sional space, we have M-- S 2, while if it can point only in directions ortho- 
gonal to the line along which the particle moves, we have M = S 1. Notice 
that in the first case ~r(S 2) = {e}, so that no new topological information is 
provided by our setting, while in the second case zr(S 1) = Z, and the topologi- 
cal classification provided by considering the fiber knots is finer than the 
one provided by considering the knots (i.e., the particle trajectory) alone. 

B. Here we are concerned with collective motions: as already pointed 
out, we have M=D2\{0}  and G the holonomy group of the M bundle over 
S 1, denoted as G = h(M). The collective fluid motions of the kind considered 
here are classified by Bn | ~ h(M). 

Here again, h(M)= Z, so that considering fiber knots instead of knots 
amounts to considering, besides the topology of the reference trajectory, the 
helical twist (with respect to this) of neighboring trajectories] 
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